3.299 \(\int \frac{x \left (d^2-e^2 x^2\right )^p}{(d+e x)^4} \, dx\)

Optimal. Leaf size=118 \[ \frac{\left (d^2-e^2 x^2\right )^{p+1}}{2 e^2 (3-p) (d+e x)^4}-\frac{2^{p-2} \left (\frac{e x}{d}+1\right )^{-p-1} \left (d^2-e^2 x^2\right )^{p+1} \, _2F_1\left (3-p,p+1;p+2;\frac{d-e x}{2 d}\right )}{d^4 e^2 (3-p) (p+1)} \]

[Out]

(d^2 - e^2*x^2)^(1 + p)/(2*e^2*(3 - p)*(d + e*x)^4) - (2^(-2 + p)*(1 + (e*x)/d)^
(-1 - p)*(d^2 - e^2*x^2)^(1 + p)*Hypergeometric2F1[3 - p, 1 + p, 2 + p, (d - e*x
)/(2*d)])/(d^4*e^2*(3 - p)*(1 + p))

_______________________________________________________________________________________

Rubi [A]  time = 0.157093, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13 \[ \frac{\left (d^2-e^2 x^2\right )^{p+1}}{2 e^2 (3-p) (d+e x)^4}-\frac{2^{p-2} \left (\frac{e x}{d}+1\right )^{-p-1} \left (d^2-e^2 x^2\right )^{p+1} \, _2F_1\left (3-p,p+1;p+2;\frac{d-e x}{2 d}\right )}{d^4 e^2 (3-p) (p+1)} \]

Antiderivative was successfully verified.

[In]  Int[(x*(d^2 - e^2*x^2)^p)/(d + e*x)^4,x]

[Out]

(d^2 - e^2*x^2)^(1 + p)/(2*e^2*(3 - p)*(d + e*x)^4) - (2^(-2 + p)*(1 + (e*x)/d)^
(-1 - p)*(d^2 - e^2*x^2)^(1 + p)*Hypergeometric2F1[3 - p, 1 + p, 2 + p, (d - e*x
)/(2*d)])/(d^4*e^2*(3 - p)*(1 + p))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 27.9677, size = 112, normalized size = 0.95 \[ \frac{\left (d - e x\right )^{4} \left (d^{2} - e^{2} x^{2}\right )^{p - 3}}{2 e^{2} \left (- p + 3\right )} - \frac{\left (\frac{\frac{d}{2} + \frac{e x}{2}}{d}\right )^{- p} \left (d^{2} - e^{2} x^{2}\right )^{p} \left (d^{2} e - d e^{2} x\right )^{- p} \left (d^{2} e - d e^{2} x\right )^{p + 1}{{}_{2}F_{1}\left (\begin{matrix} - p + 3, p + 1 \\ p + 2 \end{matrix}\middle |{\frac{\frac{d}{2} - \frac{e x}{2}}{d}} \right )}}{4 d^{4} e^{3} \left (- p + 3\right ) \left (p + 1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x*(-e**2*x**2+d**2)**p/(e*x+d)**4,x)

[Out]

(d - e*x)**4*(d**2 - e**2*x**2)**(p - 3)/(2*e**2*(-p + 3)) - ((d/2 + e*x/2)/d)**
(-p)*(d**2 - e**2*x**2)**p*(d**2*e - d*e**2*x)**(-p)*(d**2*e - d*e**2*x)**(p + 1
)*hyper((-p + 3, p + 1), (p + 2,), (d/2 - e*x/2)/d)/(4*d**4*e**3*(-p + 3)*(p + 1
))

_______________________________________________________________________________________

Mathematica [A]  time = 0.0985804, size = 102, normalized size = 0.86 \[ \frac{2^{p-4} (d-e x) \left (\frac{e x}{d}+1\right )^{-p} \left (d^2-e^2 x^2\right )^p \left (\, _2F_1\left (4-p,p+1;p+2;\frac{d-e x}{2 d}\right )-2 \, _2F_1\left (3-p,p+1;p+2;\frac{d-e x}{2 d}\right )\right )}{d^3 e^2 (p+1)} \]

Antiderivative was successfully verified.

[In]  Integrate[(x*(d^2 - e^2*x^2)^p)/(d + e*x)^4,x]

[Out]

(2^(-4 + p)*(d - e*x)*(d^2 - e^2*x^2)^p*(-2*Hypergeometric2F1[3 - p, 1 + p, 2 +
p, (d - e*x)/(2*d)] + Hypergeometric2F1[4 - p, 1 + p, 2 + p, (d - e*x)/(2*d)]))/
(d^3*e^2*(1 + p)*(1 + (e*x)/d)^p)

_______________________________________________________________________________________

Maple [F]  time = 0.146, size = 0, normalized size = 0. \[ \int{\frac{x \left ( -{e}^{2}{x}^{2}+{d}^{2} \right ) ^{p}}{ \left ( ex+d \right ) ^{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x*(-e^2*x^2+d^2)^p/(e*x+d)^4,x)

[Out]

int(x*(-e^2*x^2+d^2)^p/(e*x+d)^4,x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x}{{\left (e x + d\right )}^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((-e^2*x^2 + d^2)^p*x/(e*x + d)^4,x, algorithm="maxima")

[Out]

integrate((-e^2*x^2 + d^2)^p*x/(e*x + d)^4, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x}{e^{4} x^{4} + 4 \, d e^{3} x^{3} + 6 \, d^{2} e^{2} x^{2} + 4 \, d^{3} e x + d^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((-e^2*x^2 + d^2)^p*x/(e*x + d)^4,x, algorithm="fricas")

[Out]

integral((-e^2*x^2 + d^2)^p*x/(e^4*x^4 + 4*d*e^3*x^3 + 6*d^2*e^2*x^2 + 4*d^3*e*x
 + d^4), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x \left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{p}}{\left (d + e x\right )^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x*(-e**2*x**2+d**2)**p/(e*x+d)**4,x)

[Out]

Integral(x*(-(-d + e*x)*(d + e*x))**p/(d + e*x)**4, x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x}{{\left (e x + d\right )}^{4}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((-e^2*x^2 + d^2)^p*x/(e*x + d)^4,x, algorithm="giac")

[Out]

integrate((-e^2*x^2 + d^2)^p*x/(e*x + d)^4, x)